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Abstract

We study general conditions under which the computations of the index of a perturbed Dirac operator Ds = D + s Z localize
to the singular set of the bundle endomorphism Z in the semiclassical limit s → ∞. We show how to use Witten’s method to
compute the index of D by doing a combinatorial computation involving local data at the nondegenerate singular points of the
operator Z . In particular, we provide examples of novel deformations of the de Rham operator to establish new results relating the
Euler characteristic of a spinc manifold to maps between its even and odd spinor bundles.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

About 20 years ago Witten [18] introduced a beautiful new approach to proving Morse inequalities based on the
deformation of the de Rham complex. His ideas were fruitfully applied in many specific situations. The purpose of
this paper is to study general conditions under which one can use the method of Witten deformations to obtain an
expression for the index of any Dirac-type operator in terms of local quantities associated to singular sets of bundle
maps. The operators and bundle maps considered in this paper are more general and include those considered by other
researchers as special cases.

We now describe the setup of our paper. See Appendix B for a review of graded Clifford bundles and Dirac
operators. Let E = E+

⊕ E− be a graded self-adjoint Clifford module over a closed, smooth, Riemannian manifold
M . Let Γ (M, E) denote the space of smooth sections of E and D : Γ (M, E) → Γ (M, E) be the Dirac operator
associated to a Clifford module E .

Let D±
: Γ

(
M, E±

)
→ Γ

(
M, E∓

)
denote the restrictions of the Dirac operator to smooth even or odd sections.

Observe that D−
=
(
D+

)∗, the L2-adjoint of D+. Let Z+
: Γ

(
M, E+

)
→ Γ

(
M, E−

)
be a smooth bundle map,

and we let Z− denote the adjoint of Z+. The operator Z on Γ (M, E), defined by Z
(
v+

+ v−
)

= Z−v−
+ Z+v+

for any v+
∈ E+

x and v−
∈ E−

x , is self-adjoint. A generalized Witten deformation of D is a family Ds of perturbed

∗ Corresponding author.
E-mail addresses: i.prokhorenkov@tcu.edu (I. Prokhorenkov), k.richardson@tcu.edu (K. Richardson).

0393-0440/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2006.03.004

http://www.elsevier.com/locate/jgp
mailto:i.prokhorenkov@tcu.edu
mailto:k.richardson@tcu.edu
http://dx.doi.org/10.1016/j.geomphys.2006.03.004


298 I. Prokhorenkov, K. Richardson / Journal of Geometry and Physics 57 (2006) 297–321

differential operators

Ds = (D + s Z) : Γ (M, E) → Γ (M, E).

We define the operators D±
s by restricting in the obvious ways. Our definition includes the known examples of Witten

deformation as special cases.
It is well-known [2] that the index ind

(
D+

)
of D+ depends only on the homotopy type of the principal symbol

and satisfies

ind (D) = dim ker
(
(Ds)

2
∣∣∣
Γ(M,E+)

)
− dim ker

(
(Ds)

2
∣∣∣
Γ(M,E−)

)
.

Thus, we need to study the operator

(Ds)
2

= D2
+ s (Z D + DZ)+ s2 Z2.

The leading order behavior of the eigenvalues of this operator as s → ∞ is determined by combinatorial data at the
singular set of the operator Z . This “localization” allows one to compute ind (D) in terms of that data.

The results of this paper hold if the perturbation Z is a proper perturbation. That is, it satisfies two conditions:

(1) (Ds)
2
− (D)2 = s (Z D + DZ)+ s2 Z2 is a bundle map.

(2) Each singular point x̄ of Z is a proper singular point; that is,
(a) Z (x̄) = 0.
(b) In local coordinates x on a sufficiently small neighborhood U of x̄ , there exists a constant c > 0 such that for

all α ∈ Γ (U, E) and all x ∈ U ,
‖Zα‖x ≥ c |x − x̄ | ‖α‖x ,

where ‖·‖x is the pointwise norm on Ex .

We should note that in the important case when Z is Clifford multiplication by a vector field, Condition (1) is
not satisfied, and localization typically does not occur (see Appendix A).1 In the proof of the Poincaré–Hopf index
theorem, Z = V [

∧ +V y, and Condition (2) reduces to the requirement that the vector field has nondegenerate
zeros.

In Section 2, we classify the possible gradings of E compatible with the existence of such Z . We also establish
necessary and sufficient conditions on the dimension of E and on the form of the operator Z in order for (1) and (2)
to be satisfied.

In Section 3, we show that conditions (1) and (2) imply that the singular set of Z consists of a finite number of
nondegenerate zeros, and as s → ∞ the bounded spectrum of the Witten Laplacian localizes to the singular set of Z .
This means that the index of D can be computed by studying the zero spectrum of limiting “model” operators, which
turn out to be harmonic oscillators. The main tool is the localization theorem of Shubin [16].

If a proper perturbation with no singularities exists, then the index is zero. In particular, let E± ∼= (S ⊗ W )± =(
S+

⊗ W ±
)
⊕
(
S−

⊗ W ∓
)

be any graded, self-adjoint Clifford module over an even-dimensional, spinc manifold M
(all such Clifford modules have this form; see Corollary B.2 in Appendix B). Then the index of the Dirac operator
corresponding to this Clifford module is zero if the bundles W + and W − are isomorphic (see Corollary 3.5).

In Section 4, we consider an elliptic operator of the form Q =
∑(

A j∂ j + x j B j
)

on Cm-valued functions on Rn ,
such that each A j and Bk is an m × m matrix and

∑
xk Bk is a proper perturbation. We prove that Q is Fredholm and

that continuous families of such operators have the same index.
The main results of the paper are Theorems 5.1 and 5.4, which express the index of the Dirac operator D in terms

of the local information at the singular points. We show in Theorem 5.1 that the index of the Dirac operator D is
the sum of indices of operators on vector-valued functions on Rn as in Section 4, where the coefficients A j and Bk
depend only on local data at each singular point x . Assuming typical properties of Z near each x , the indices may
be computed more explicitly, as shown in Theorem 5.4. We emphasize strongly that all the information necessary to
compute the index of D is contained in the set of matrices of first derivatives of Z and in the Clifford matrices taken
at each singular point x . Thus this information is local in nature, and the answer is easily obtainable.

1 If the vector field is a generator of an action by a one-parameter group of isometries, the localization occurs when the Witten Laplacian is
restricted to each eigenspace of the Lie derivative associated to this generator. We plan to treat this situation in a paper currently under preparation.
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In Section 6 we apply our results to the geometric Dirac operators. In particular, we use Corollary 5.6 to obtain the
Poincaré–Hopf theorem. Our proof also yields a new result, that the Euler characteristic of an even-dimensional, spinc

manifold is zero if and only if the even and odd spinc bundles are isomorphic (see Corollary 6.7). In Theorem 6.11,
we show that the Euler characteristic of a spinc manifold is the sum of the indices of zeros of a possibly singular
section of the conformal pin bundle over the manifold. Thus, the Euler characteristic is zero if and only if the odd pin
bundle Pin− (T ∗M) has a global section. In Section 6.3, we use our results to show that if M is a submanifold of odd
codimension in a manifold endowed with a graded Clifford module, then the index of the Dirac operator associated to
the restriction of this Clifford bundle to M is zero.

Witten deformation was first introduced in [18], where the author sketched a beautiful proof of the Morse
inequalities by deforming the de Rham complex (see also [7,16,15,14]). In [8] B. Helffer and J. Sjöstrand put Witten’s
analysis on a rigorous footing. In addition Witten suggested a way to use his method to prove the Poincaré–Hopf
theorem. Rigorous treatments of his ideas in this direction are contained in [17,19].

2. Perturbing Dirac operators

2.1. Preliminaries and notational conventions

Throughout this paper, the manifold M is always assumed to be a smooth, closed, oriented Riemannian manifold
of dimension n, and E = E+

⊕ E− is assumed to be a graded, self-adjoint, Hermitian Clifford module over M . If
M is spinc, then S always denotes a complex spinor bundle over M , a particular example of such a bundle E . We
define D : Γ (M, E) → Γ (M, E) to be the corresponding Dirac operator, and let D±

: Γ
(
M, E±

)
→ Γ

(
M, E∓

)
denote the restrictions of D to smooth even and odd sections. The operator D− is the adjoint of D+ with respect to
the L2-metric on Γ (M, E) defined by the Riemannian metric on M and the Hermitian metric on E .

In the following, we denote Clifford multiplication by an element v ∈ Tx M on the fiber Ex by c (v). Clifford

multiplication by cotangent vectors will use the same notation: c (α) := c
(
α#
)
, where T ∗

x M
#

→ Tx M is the metric
isomorphism.

The natural grading on E is induced by the action of the chirality operator γ . Recall that if e1, . . . , en is an oriented
orthonormal basis of Tx M , then the chirality operator is multiplication by

γ = ikc(e1) . . . c(en) ∈ End(Ex ),

where k = n/2 if n is even and k = (n + 1) /2 if n is odd. In this paper we study the other possible gradings as well.
See the appendix (Appendix B) for more information.

Let Z+
∈ Γ

(
M,Hom

(
E+, E−

))
be a smooth bundle map, and let Z− denote the adjoint of Z+. The operator Z

on Γ (M, E), defined by Z
(
v+

+ v−
)

= Z−v−
+ Z+v+ for any v+

∈ E+
x and v−

∈ E−
x , is self-adjoint. Let Ds

denote the perturbed Dirac operator

Ds = (D + s Z) : Γ (M, E) → Γ (M, E), (2.1)

and define the operators D±
s by restricting in the obvious ways.

2.2. Nonexistence of perturbations compatible with the natural grading

For any differential operator L , let σL denote its principal symbol. We will start with the result that holds for general
first-order operators.

Lemma 2.1. Let L : Γ (M, E) → Γ (M, E) be a smooth, first-order differential operator, and let Z : Γ (M, E) →

Γ (M, E) be a bundle endomorphism. Then the operator L Z + Z L is a bundle map if and only if Z ◦ σL (x, ξ) +

σL (x, ξ) ◦ Z = 0 on Ex for every x ∈ M, ξ ∈ T ∗
x M.

Proof. The differential operator Z L + L Z is zeroth order if and only if it commutes with multiplication m f by any
smooth function f on M . We calculate the commutator[

Z L + L Z ,m f
]

= Z
[
L ,m f

]
+
[
L ,m f

]
Z since Z is zeroth order

= i(Z ◦ σL (d f )+ σ (L) (d f ) ◦ Z),
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where for any 1-form α on M , σL (α) is the bundle endomorphism defined by σL (α)|x = σL (x, αx ). �

Since

(Ds)
2
− D2

= s (Z D + DZ)+ s2 Z2, (2.2)

we have the following corollary:

Corollary 2.2. For any s 6= 0 the operator (Ds)
2
− D2 is zeroth order if and only if Z ◦σD (x, ξ)+σD (x, ξ)◦ Z = 0

on Ex for every x ∈ M, ξ ∈ T ∗
x M.

Remark 2.3. Corollary 2.2 is true in even greater generality, such as when D is a first-order, classical
pseudodifferential operator. However, in this paper we consider only differential operators.

A bundle endomorphism Z satisfying the condition in Corollary 2.2 does not always exist. In particular, the
following result applies to the spinc Dirac operator, whose principal symbol is ic (ξ) (for ξ ∈ T ∗M).

Proposition 2.4. Let V be an even-dimensional, oriented, Euclidean vector space. Let S = S+
⊕ S− denote the

associated space of complex spinors. There does not exist a linear map Z : S → S such that Z ◦ c (v)+ c (v) ◦ Z = 0
for every v ∈ V and such that Z restricts to a map Z : S+

→ S−.

Proof. Any endomorphism of S can be written as Clifford multiplication by an element of Cl (V ), so that the result
is equivalent to the statement that no element of Cl (V ) anticommutes with every vector. This is a consequence of
the elementary fact that if α ∈ Cl (V ) anticommutes with every vector, then α is a complex multiple of the chirality
operator. Since this element maps S+ to itself, the result follows. �

The corollary below is a generalization.

Corollary 2.5. Let V be an even-dimensional, oriented, Euclidean vector space. Let S = S+
⊕ S− denote the

associated space of complex spinors. Let W be another vector space, and consider the Clifford action c̃ (v) = c (v)⊗1
on S⊗ W . There does not exist a linear map Z : S⊗ W → S⊗ W such that Z ◦ c̃ (v)+ c̃ (v) ◦ Z = 0 for every v ∈ V
and such that Z restricts to a map Z : S+

⊗ W → S−
⊗ W .

Proof. Endow W with a Euclidean (or Hermitian) metric. Choose an orthonormal basis {w1, . . . , wk} of W . Write

Z(v ⊗ wi ) =

∑
j

Zi j (v)⊗ w j ;

the corollary follows from the proposition applied to each linear operator Zi j separately. �

Example 2.6. The Dolbeault and signature operators do not have such perturbations, because in both cases the
Clifford action has the form of Corollary 2.5.

2.3. Admissible perturbations

The following results determine the precise form of perturbations Z satisfying the condition in Corollary 2.2 if D
is the Dirac operator associated to a Clifford bundle over a spinc manifold.

Proposition 2.7. Let M be even-dimensional and spinc. Let E± ∼= (S ⊗ W )± =
(
S+

⊗ W ±
)
⊕
(
S−

⊗ W ∓
)

be any
Clifford module over M (see Corollary B.2 in the appendix). Suppose that there is a bundle endomorphism Z+

:

Γ
(
M, (S ⊗ W )+

)
→ Γ

(
M, (S ⊗ W )−

)
such that the self-adjoint operator Z =

(
Z+,

(
Z+
)∗)

: S ⊗ W → S ⊗ W
anticommutes with Clifford multiplication by vectors. Then Z has the form Z = γ⊗φ, where γ is the chirality operator
on S and where φ+

: W +
→ W − is a bundle map with φ =

(
φ+,

(
φ+
)∗). Conversely, any bundle endomorphism of

that form anticommutes with Clifford multiplication by vectors.

Proof. The action of Z on S ⊗ W has the following local form. For a local orthonormal basis {b1, . . . , bk} of W and
any α ∈ Γ (M,S),
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Z(α ⊗ bi ) =

∑
j

Zi j (α)⊗ b j ,

where each operator Zi j must anticommute with Clifford multiplication by vectors. Thus Zi j = ci j γ (α) for some
complex scalar ci j and

Z(α ⊗ bi ) =

∑
j

ci jγ (α)⊗ b j = γ (s)⊗

∑
j

ci j b j .

The operator γ restricts to 1 on S+ and −1 on S−. The result follows from the hypothesis and the equation above. �

Remark 2.8. The case when W − is zero-dimensional is reflected in Corollary 2.5, where the only possible bundle
map φ is the zero map.

Remark 2.9. The restriction of such a φ to a fiber is invertible if and only if dimW +
= dimW −.

Proposition 2.10. Let M be odd-dimensional and spinc. Fix the representation c+ of Cl (T M). Let E ∼= S ⊗(
W ′

⊕ W ′
)

be as in Corollary B.2. Suppose that there exists a self-adjoint endomorphism Z =
(
Z+,

(
Z+
)∗)

: E → E
that anticommutes with the Clifford multiplication

(
c+ (v)⊗ 1, c− (v)⊗ 1

)
by all vectors v ∈ T M. Then Z has the

form Z = 1 ⊗

(
0 φ

−φ 0

)
, where φ : W ′

→ W ′ is a skew-adjoint bundle map. Conversely, any bundle endomorphism

of that form is self-adjoint and anticommutes with Clifford multiplication by vectors.

Proof. Since Cl+ ∼= End (S) in odd dimensions, no nonzero element of End (S) anticommutes with Clifford
multiplication c+ by all vectors. An endomorphism Z that anticommutes with

cE (v) =
(
c+ (v)⊗ 1, c− (v)⊗ 1

)
= c+ (v)⊗

(
1 0
0 −1

)
for all vectors v must have the following properties. First, Z : S ⊗ W → S ⊗ W must commute with all
maps of the form A ⊗ I with A ∈ End (S), because any such map can be realized as multiplication by an
element in Cl+ in odd dimensions. It follows easily that Z can be expressed in the form Z = 1 ⊗ Z ′, where

Z ′
=

(
Z1 Z2
Z3 Z4

)
is an endomorphism of W ′

⊕ W ′. Because Z ′ maps span
{
(w,±w) ∈ W ′

⊕ W ′
| w ∈ W ′

}
to

span
{
(w,∓w) ∈ W ′

⊕ W ′
| w ∈ W ′

}
, Z1 ± Z2 = ∓Z3 − Z4. These equations imply that Z4 = −Z1 and Z3 = −Z2.

Because Z anticommutes with cE (v), Z1 = Z4 = 0. Self-adjointness of Z implies further that Z2 is skew-adjoint,
and the result follows. �

Remark 2.11. If M is not spinc, Propositions 2.7 and 2.10 above remain true locally.

2.4. Proper perturbations of Dirac operators

In this section, we state the nondegeneracy conditions on the perturbation. In previously studied types of
perturbations, our conditions are equivalent to those required by others (see the introduction).

Definition 2.12. Let Z : E → E be a smooth bundle map. We say that x ∈ M is a proper singular point of Z if on
a sufficiently small neighborhood U of x we have

(1) Z |x = 0, and
(2) in local coordinates x on U , there exists a constant c > 0 such that for all α ∈ Γ (U, E),

‖Zα‖x ≥ c |x − x | ‖α‖x ,

where ‖·‖x is the pointwise norm on Ex .

Lemma 2.13. A point x ∈ M is a proper singular point of Z if and only if, in local coordinates x on U, there exist
invertible bundle maps Z j for 1 ≤ j ≤ n = dim M over U such that Z =

∑
j (x − x) j Z j on U, and Z is invertible

over U \ {x}.
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Proof. Since Z is smooth and vanishes at x , Z =
∑

j (x − x) j Z j for some bundle maps Z j . The inequality in the
definition above is equivalent to∥∥∥∥∥∑

j

σ j Z jα

∥∥∥∥∥
2

x

≥ c2

for every σ ∈ Sn−1, α ∈ Γ
(
U , E

)
, x ∈ U such that ‖α‖x = 1. Since the left hand side of the inequality is a

continuous function of σ and α over the compact set Sn−1
×
{
α ∈ Γ

(
U , E

)
| ‖α‖x = 1 for all x ∈ U

}
, its infimum

is attained. It follows that Z is invertible away from x if and only if the inequality holds. �

Definition 2.14. Let D±
: Γ

(
M, E±

)
→ Γ

(
M, E∓

)
be the Dirac operator associated to a bundle of graded Clifford

modules. Let Ds = D + s Z for s ∈ R, where Z =
(
Z+,

(
Z+
)∗)

∈ Γ
(
M,End

(
E+, E−

))
. We say that Z is a proper

perturbation of D if

(1) (Ds)
2
− D2 is a zeroth order operator.

(2) All singular points of Z are proper.

Remark 2.15. If M is compact, then the number of singular points of a proper perturbation is finite.

The following lemma will be used to quantify ranks of vector bundles on which the proper perturbations act.

Lemma 2.16. There exists a linear map L : Rk
→ Mr (C) that satisfies L (x) ∈ Gl (r,C) for x 6= 0 if and only if

r = m2

⌊
k−1

2

⌋
for some positive integer m.

Proof. Since L (x) could be Clifford multiplication by the vector x on the r -dimensional vector space S⊗Cm , ranks of

the form r = m2

⌊
k
2

⌋
are realizable. If k is even, the image of the restriction of Clifford multiplication to S+

⊗ Cm has

rank r = m2
k
2 −1. Hence for all positive integers k and m, there exist linear maps L : Rk

→ Mr (C) with r = m2

⌊
k−1

2

⌋
and L (x) ∈ Gl (r,C) for x 6= 0.

2Next, suppose that a linear map L : Rk
→ Mr (C) satisfies L (x) ∈ Gl (r,C) for x 6= 0, for some positive

integers k and r . Such a map restricts to a map L : Sk−1
→ Gl (r,C) with L (−x) = −L (x). Consider the vector

bundles rT = RPk−1
× Cr and r Lk (r times the complexification of the canonical line bundle) over the projective

space RPk−1. Note that

RPk−1
× Cr

= Sk−1
× Cr/ (x, y) ∼ (−x, y), and

r Lk = Sk−1
× Cr/ (x, y) ∼ (−x,−y).

The map f : Sk−1
× Cr

→ Sk−1
× Cr defined by f (x, y) = (x, L (x) y) induces an isomorphism between r Lk

and rT. Thus, the virtual bundle r (Lk − T) represents the zero element in the reduced complex K-group K̃
(
RPk−1

)
.

Since

K̃
(
RPk−1

)
∼= Z

2

⌊
k−1

2

⌋

with generator Lk − T (see [1]), we must have r = m2

⌊
k−1

2

⌋
for some positive integer m. �

The following two theorems give necessary and sufficient conditions on the bundle E and the bundle map Z in
order that Z be a proper perturbation.

Theorem 2.17. Suppose that the dimension n of M is even. Let Z be a proper perturbation of D on Γ (M, E), with
notation as in Definition 2.14. Let {x1, x2, . . . , x N } be the singular points of Z, and let Ul be the neighborhood of x l
as in the definition. Over each Ul , choose a local spinc bundle and isomorphism E ∼= S ⊗ W as in Proposition 2.7.
Then the following conditions must be satisfied.

2 This part of the argument is provided in [12,13].
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(1) The local bundles W + and W − from Proposition 2.7 must have the same dimension, which implies that the rank
of E must be a multiple of 2

n
2 +1. If the set of singular points is nonempty, then the rank must be of the form m2n ,

where m is a positive integer.
(2) Near each singular point x, the bundle map Z has the form Z =

∑
j (x − x) j γ ⊗ φ j , with notation as in

Definition 2.14 and Proposition 2.7, where each φ+

j : W +
→ W − is a locally defined bundle isomorphism with

φ j =

(
φ+

j ,
(
φ+

j

)∗)
.

Conversely, every graded, self-adjoint bundle map Z that has a finite set of singular points and satisfies the two
conditions above is a proper perturbation.

Proof. The first part of the first condition and the second condition follow directly from Proposition 2.7. To prove
the first condition in the case where the set of singular points is nonempty, suppose that x is a singular point of
Z , and choose coordinates centered at x . Identify W +

x
∼= W −

x
∼= Cd for the appropriate positive integer d. Define

L (x) =
∑n

j=1 x jφ
+

j (x) : Cd
→ Cd ; the hypotheses imply that L (x) is invertible for each x 6= 0. Thus,

d = m2

⌊
n−1

2

⌋
= m2

n
2 −1

for some positive integer m, by Lemma 2.16. Since the dimension of S is 2
n
2 , the statement follows. The converse is

clear. �

Remark 2.18. The given minimal rank 2
n
2 +1 is sharp, since the example given in Proposition 6.14 has precisely that

rank.

Theorem 2.19. Suppose that the dimension n of M is odd. Let Z be a proper perturbation of D on Γ (M, E), with
notation as in Definition 2.14. Let {x1, x2, . . . , x N } be the singular points of Z, and let Ul be the neighborhood
of x l as in the definition. Over each Ul , choose a local spinc bundle and isomorphism E ∼= S ⊗

(
W ′

⊕ W ′
)

as in
Proposition 2.10. Then the following condition must be satisfied.
(1) If the set of singular points is empty, there is no further restriction on the rank of E; that is, it need only be a

multiple of 2
(n+1)

2 . If the set of singular points is nonempty, then the rank of E must have the form m2n , where m
is a positive integer.

(2) Near each singular point, the bundle map Z has the form Z =
∑

j x j 1 ⊗

(
0 φ j
−φ j 0

)
as in Proposition 2.10 and

in Definition 2.14, where each φ j : W ′
→ W ′ is a locally defined, skew-adjoint bundle isomorphism.

Conversely, every graded, self-adjoint bundle map Z that has a finite set of singular points and satisfies the two
conditions above is a proper perturbation.

Proof. The second condition follows directly from Proposition 2.10. To prove the first condition in the case where
the set of singular points is nonempty, choose local coordinates x centered at a singular point x . Identify W ′

x
∼= Cd

for the appropriate positive integer d . Define L (x) =
∑n

j=1 x jφ j (x) : Cd
→ Cd ; the hypotheses imply that L (x) is

invertible for each x 6= 0. Thus,

d = m2

⌊
n−1

2

⌋
= m2

(
n−1

2

)
for some positive integer m, by Lemma 2.16. This proves the statement since the dimension of S is 2

n−1
2 , and the

converse follows easily. �

The following result shows that nonsingular proper perturbations always exist on Clifford modules over an odd-
dimensional manifold.

Proposition 2.20. Suppose that the dimension n of M is odd. Let E be a bundle of graded Clifford modules over M,
and let D be the corresponding Dirac operator. Then there always exists a proper perturbation Z of D; in particular
the perturbation may be chosen to be invertible.

Proof. To prove that proper perturbations always exist, we simply take φ = i1 in Proposition 2.10. �

Remark 2.21. Note that the perturbation in the proof with W ′
= C acts on a bundle of rank 2

n+1
2 , so that the minimal

rank in Theorem 2.19 is sharp.
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3. Localization

In this section we will use [17, Proposition 1.2] to study the asymptotics of the spectrum of D2
s as s → ∞. (See

also [16].)
Let

Hs := s−1 (Ds)
2

= s−1 D2
+ Z D + DZ + s Z2

= −s−1 A + B + sC,

where −A = D2 is a second order, elliptic, self-adjoint operator with a nonnegative principal symbol, and the
operators B = Z D + DZ and C = Z2 are self-adjoint bundle maps.

Each of the operators Hs , A, B, and C has two self-adjoint components, acting on Γ
(
M, E+

)
and on Γ

(
M, E−

)
,

respectively. For example,

H+
s := s−1 (Ds)

2
|Γ(M,E+) = s−1 D−

s D+
s : Γ

(
M, E+

)
→ Γ

(
M, E+

)
, and

B−
:= (Z D + DZ)|Γ(M,E−) = Z+ D−

+ D+Z−
: Γ

(
M, E−

)
→ Γ

(
M, E−

)
.

We now describe a model operator: a matrix harmonic oscillator that will serve as an approximation of (Ds)
2 near

x , a singular point of C . We choose local coordinates x = (x1, . . . , xn) and a trivialization of E near x . We assume
that the volume associated to the Riemannian metric g is the Lebesgue volume element at the point x (this is easily
done by rescaling if necessary).

In the neighborhood of x , operator A becomes a 2m × 2m block diagonal differential operator with two m × m
blocks, where m = rankE+

= rankE−. It has the form

A =

∑
1≤i, j≤n

Ai j (x)
∂2

∂xi∂x j
+ A(1).

Note that the operator A(1) is at most first order. Let

A(2) =

∑
1≤i, j≤n

Ai j (x)
∂2

∂xi∂x j
;

i.e. A(2) is the highest order part of A taken at x = x , it is a homogeneous second order differential operator with
constant coefficients that are 2m × 2m block diagonal Hermitian matrices.

We denote B = B (x), so B is just a 2m × 2m block diagonal Hermitian matrix in the chosen trivialization of E .
We also define

C (2) (x) =
1
2

∑
1≤i, j≤n

∂2Ci j

∂xi∂x j
(x) xi x j ,

i.e. C (2) is the quadratic part of the potential C near x .
We define the model operator K of Hs at a singular point x to be

K (x) = −A(2) + B + C (2).

We denote m × m blocks of K (x) as K ± (x). Each operator K + (x) and K − (x) has a discrete spectrum, since it is a
quantum Hamiltonian of a k-dimensional harmonic oscillator [16].

Let x1, x2, . . . , x N be the list of all singular points. Let

K ±
=

N⊕
l=1

K ± (x l)

be the model operators for H±
s on the set of all singular points of C = Z2. Denote the eigenvalues of K ± by
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µ±

1 < µ±

2 < µ±

3 < · · ·

and their multiplicities by

p±

1 , p±

2 , p±

3 . . .

Proposition 3.1 (Proposition 1.2 in [17]). If the C (x) ≥ c |x − x |
2 1, then the eigenvalues of H+

s concentrate near
the eigenvalues of the model operator K +. That is, for any positive integer q there exists s0 > 0 and c1 > 0 such that
for any s > s0

Theorem 3.2. (1) there are precisely p+

j eigenvalues (multiplicities counted) of H+
s in the interval(

µ+

j − c1s−1/5, µ+

j + c1s−1/5
)
, j = 1, . . . , q;

(2) there no eigenvalues of H+
s in

(
−∞, µ+

1 − c1s−1/5
)

and in the intervals(
µ+

j + c1s−1/5, µ+

j+1 − c1s−1/5
)
, j = 1, . . . , q;

(3) similar results also hold for operators H−
s and K −.

Corollary 3.3. In the notation above,

ind (D) = dim ker
(
K +

)
− dim ker

(
K −

)
.

Proof. For each s > 0, operators H+
s = s−1 D−

s D+
s and H−

s = s−1 D+
s Ds are positive elliptic self-adjoint operators

acting on sections of vector bundles over a compact smooth manifold M . Therefore the operators H+
s and H−

s have
discrete spectra σ

(
H±

s

)
⊂ [0,+∞) with finite multiplicities. By Proposition 3.1, the spectra of K + and K − are also

nonnegative (and of course discrete).
Choose any real number r > 0, so that r is strictly less than the least positive number in the union of the spectra of

K + and K −. Then for any s > 0 we have

ind (D) = dim ker
(

s−1 (Ds)
2
∣∣∣
Γ(M,E+)

)
− dim ker

(
s−1 (Ds)

2
∣∣∣
Γ(M,E−)

)
,

= dim ker H+
s − dim ker H−

s

= #
{
σ
(
H+

s

)
∩ [0, r)

}
− #

{
σ
(
H−

s

)
∩ [0, r)

}
,

because D+
s is an isomorphism between the eigenspaces of H+

s and of H−
s corresponding to nonzero eigenvalues. By

choosing s sufficiently large in the formula above and applying Proposition 3.1, we obtain

ind (D) = dim ker
(
K +

)
− dim ker

(
K −

)
. �

Remark 3.4. With the notation of Section 2.1, if Z :=
(
Z+,

(
Z+
)∗)

∈ Γ
(
M,End

(
E+

⊕ E−
))

is everywhere
nonsingular and anticommutes with Clifford multiplication by vectors, then the corollary implies that the index of
the Dirac operator D must be zero. Proposition 2.20 then yields a new proof that the index of a Dirac operator (and
thus any elliptic differential operator) on an odd-dimensional manifold is zero.

By applying Corollary 3.3, Proposition 2.7, and the above remark to even-dimensional manifolds, we obtain the
following corollary.

Corollary 3.5. Let M be even-dimensional and spinc. Let E± ∼= (S ⊗ W )± =
(
S+

⊗ W ±
)

⊕
(
S−

⊗ W ∓
)

be any
graded, self-adjoint Clifford module over M. Then the index of the Dirac operator corresponding to this Clifford
module is zero if the bundles W + and W − are isomorphic.

Proof. If there exists a bundle isomorphism φ+
: W +

→ W −, then Z±
= γ ⊗

(
φ+,

(
φ+
)∗)

: E±
→ E∓ is a bundle

isomorphism that anticommutes with Clifford multiplication. Therefore, the index is zero. �
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4. Local index theory on Rn

In this section, if P is a linear operator defined on a dense domain in a Hilbert space, then P∗ denotes the formal
adjoint of P .

Let A1, . . . , An, B1, . . . , Bn be m × m matrices, and let

A =

n∑
j=1

A j∂ j , B (x) =

n∑
j=1

x j B j , and

Q = A + B(x).

We take the domain of Q to be the space of compactly supported, smooth Cm-valued functions on Rn . We assume that

(1) A is an elliptic operator.
(2) There is a positive constant K such that (B (x))∗ B (x) ≥ K |x |

2 for all x ∈ Rn .
(3) For each j and k, A∗

j Bk − B∗

k A j = 0.

Remark 4.1. Note that the second condition above is equivalent to the fact that the smallest eigenvalue of
(B (x))∗ B (x) is at least K |x |

2. Thus, the same inequality holds for B (x) (B (x))∗.

Then

Q∗Q = A∗ A −

(
n∑

j=1

A∗

j B j

)
+ (B (x))∗ B(x), and

Q Q∗
= AA∗

+

(
n∑

j=1

A j B∗

j

)
+ B (x) (B(x))∗.

By [6, Theorem 2.2], the operator Q on Cn
× Cn valued-functions defined by

Q =

(
0 Q∗

Q 0

)
=

n∑
j=1

(
0 −A∗

j
A j 0

)
∂ j +

(
0 (B (x))∗

B (x) 0

)
is essentially self-adjoint. Its unique self-adjoint extension is defined as the closure of Q with respect to the inner
product norm ‖·‖Q defined by ‖u‖

2
Q = ‖u‖

2
L2 + ‖Qu‖

2
L2 .

Observe that

Q2
=

(
Q∗Q 0
0 Q Q∗

)
.

Each of the operators Q∗Q and Q Q∗ are bounded from below by

P = c
n∑

j=1

(
−∂2

j + x2
j

)
1 − λ1

and above by

P ′
=

1
c

n∑
j=1

(
−∂2

j + x2
j

)
1 + λ1

for some constant c > 0, and where λ is the largest eigenvalue of
∣∣∣∑n

j=1 A j B∗

j

∣∣∣. Therefore, the norm ‖·‖Q defined

above is equivalent to the harmonic oscillator norm ‖·‖ defined by

‖u‖
2

= ‖u‖
2
L2 +

n∑
j=1

∥∥∂ j u
∥∥2

L2 +

n∑
j=1

∥∥x j u
∥∥2

L2

= ‖u‖
2
L2 +

n∑
j=1

〈(
−∂2

j + x2
j

)
u (x) , u (x)

〉
L2
.
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Denote byH the closure of the space of compactly supported, smooth Cm-valued functions on Rn with respect to the
norm ‖u‖.

It is well known that P + τ1 has a compact inverse for some constant τ , so Q2
+ τ1 must also have a compact

inverse. It follows that Q2 has a finite dimensional kernel. We conclude that both operators Q and Q are Fredholm.
We summarize the arguments of this section in the following proposition.

Proposition 4.2. Suppose that Q =
∑n

j=1 A j∂ j + B (x) satisfies conditions (1) through (3) at the beginning of this
section. Then the closure of the elliptic operator Q is Fredholm on its domainH.

Corollary 4.3. Let {Qt |t ∈ [0, 1]} be a family of operators of the form

Qt =

n∑
j=1

A j (t) ∂ j +

n∑
j=1

x j B j (t),

where A j (t) and B j (t) are continuous families of matrices such that
∑n

j=1 x j A j and
∑n

j=1 x j B j are invertible for
any nonzero x ∈ Rn , satisfying

A∗

j Bk − B∗

k A j = 0

for each j and k. Then the index of Qt is defined and is independent of t .

Proof. It suffices to show that the family
{

Qt : H→ L2
|t ∈ [0, 1]

}
is a continuous family in the norm topology. If

max j
∣∣A j (t1)− A j (t2)

∣∣ and max j
∣∣B j (t1)− B j (t2)

∣∣ are both less than δ > 0 (with respect to a fixed matrix norm),
then for every u ∈ H,

∥∥(Qt1 − Qt2

)
u
∥∥2

L2 =

∥∥∥∥∥
(

n∑
j=1

(
A j (t1)− A j (t2)

)
∂ j +

n∑
j=1

x j
(
B j (t1)− B j (t2)

))
u

∥∥∥∥∥
2

L2

≤ δ2

(
n∑

j=1

∥∥∂ j u
∥∥2

L2 +

n∑
j=1

∥∥x j u
∥∥2

L2

)
≤ δ2

‖u‖
2. �

5. Local calculations

We now proceed with a calculation near the singular sets that evaluates the index of the Dirac operator D. Suppose
that Z is a proper perturbation of D on Γ (M, E) with a nonempty set of singular points. This implies that there
are restrictions on the rank of E on the associated grading and on the graded bundle map Z ; see Section 2.4 and
Appendix B.8. Let U be the neighborhood of a singular point x as in Definition 2.14. We consider the operator
Ds = D + s Z on sections of E , which has the local form

Ds = D + s
∑

j

(x − x) j Z j ,

where each Z+

j : E+
→ E− is a locally defined, self-adjoint bundle isomorphism with Z j =

(
Z+

j ,
(

Z+

j

)∗)
.

We choose geodesic normal coordinates x around x such that the metric is the identity matrix at x and such that ∂ j

commutes with c (∂k) for all j and k at the point x = x . We wish to calculate the dimensions of ker
(

D2
s |Γ(M,E±)

)
.

By Corollary 3.3, it suffices to calculate the dimensions of the kernels of the model operators K ± (x) corresponding
to each singular point x . In the notation of Section 3, the model operator is K (x) = −A(2) + B + C (2), with

A(2) =

n∑
j=1

1∂2
j ,

B = Z ◦ D + D ◦ Z |x =

n∑
j=1

c
(
∂ j
)

Z j (x), and

C (2)
= quadratic part of Z2

=

(∑
j

(x − x) j Z j (x)

)2

.
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Notice that

K (x) =

(
K + (x) 0
0 K − (x)

)
=

(
D− (x) D+ (x) 0
0 D+ (x) D− (x)

)
,

where the operator D (x) is defined by

D (x) =

∑
j

c
(
∂ j
)
∂ j +

∑
j

(x − x) j Z j (x),

which satisfies the hypothesis of Proposition 4.2. Thus, D (x) is a Fredholm operator on Rn , and

dim ker
(
K + (x)

)
− dim ker

(
K − (x)

)
= indRn (D(x)).

Corollary 3.3 implies the following theorem.

Theorem 5.1. Let D : Γ (M, E) → Γ (M, E) be the Dirac operator corresponding to a graded, self-adjoint,
Hermitian Clifford module over a closed manifold. Suppose that there exists a proper perturbation (Definition 2.14)
Z of D. Then near each singularity x of Z, we write Z (x) =

∑
j (x − x) j Z j , where each Z+

j : E+
→ E− is a

locally defined bundle isomorphism with Z j =

(
Z+

j ,
(

Z+

j

)∗)
. Then the index of D satisfies

ind (D) =

∑
x singular

indRn (D(x)),

where D (x) =
∑

j c
(
∂ j
)
∂ j +

∑
j x j Z j (x) is the operator on Rn that maps E+

x -valued functions to E−

x -valued
functions.

Let us now specialize to a case where we compute the local indices indRn (D (x)) in terms of the matrices
c (∂1) , . . . , c (∂n) , Z1 (x) , . . . , Zn (x) directly. We will need to assume that Z (x)2 = q (x − x) 1, where q is a
positive definite quadratic form and 1 is the identity map. The following propositions show that there always exist
local bundle maps with this property. Furthermore, the coordinates may be chosen so that the Z j (x) anticommute.

Proposition 5.2. Suppose the operator Z (x) =
∑n

j=1 (x − x) j Z j satisfies Z (x)2 = q (x − x) 1, where q is a
positive definite quadratic form and 1 is the identity map. Then there exist local coordinates y and Hermitian linear
transformations Z̃2, . . . , Z̃n such that

Z (y) =

n∑
j=1

y j Z̃ j

and Z̃ j Z̃k + Z̃k Z̃ j = 2δ jk1. Furthermore, we have that E ∼= S ⊗ W , where the rank of W is a multiple of 2

⌈
n−1

2

⌉
.

Proof. If Z (x)2 = q (x − x) 1, then there is a symmetric matrix Q, an orthogonal matrix U , and a positive diagonal
matrix D such that

q (x − x) = Q (x − x) · (x − x)

and such that D = U QU T is the identity. Let y =
√

DU (x − x). In the new coordinates we have

Z (y) =

n∑
j=1

y j Z̃ j

for the Hermitian linear transformations Z̃ j =
∑n

k=1

(√
D

−1
U
)

jk
Zk . Then

(
Z2
)
(y) =

(
‖y‖

2) I implies the

following relations:

Z̃ j Z̃k + Z̃k Z̃ j = 2δ jk .

Note then that
{
iZ̃ j

}
becomes a set of Clifford matrices, all of which commute with the given Clifford action. �
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Proposition 5.3. Suppose that r = rank
(
E+
)

is a multiple of 2n−1. Then there exists a set of Hermitian, invertible
linear transformations{

Z j =

(
0 Z−

j
Z+

j 0

)
:=

(
0

(
Z+

j

)∗

Z+

j 0

)}
1≤ j≤n

on the graded Cl (Rn) module E+
⊕ E− ∼= Cr

⊕ Cr such that

(1) each Z j anticommutes with each c (∂k) for 1 ≤ k ≤ n, and

(2) The operator Z (x) =
∑n

j=1 (x − x) j Z j satisfies Z (x)2 = q (x − x) 1, where q is a positive definite quadratic
form and 1 is the identity map.

Proof. Suppose that the rank of E+ is a multiple of 2n−1, and E is endowed with a graded Cl (Rn) action. Then
there exists a graded Cl

(
R2n

)
action extending the original action on E = E+

⊕ E−. If
{
β j
}

1≤ j≤n is a set of

generators corresponding to Clifford multiplication on E by the additional vectors, then
{

Z j = iβ j
}

1≤ j≤n is a set of
transformations that satisfy the conditions of the proposition. �

If the
{

Z j (x)
}

anticommute (changing coordinates if necessary), then

K (x) = −

n∑
j=1

∂2
j +

n∑
j=1

c
(
∂ j
)

Z j +

(∑
j

(x − x) j Z j

)2

= −

n∑
j=1

∂2
j +

n∑
j=1

c
(
∂ j
)

Z j +

n∑
j=1

(x − x)2j Z2
j

=

n∑
j=1

(
−∂2

j + c
(
∂ j
)

Z j + (x − x)2j
(
c
(
∂ j
)

Z j
)2)

,

where each Z j is evaluated at x = x .
Observe that the operators L j = c

(
∂ j
)

Z j are Hermitian and commute with each other and thus can be
diagonalized simultaneously. Let v be a common eigenvector of each operator L j corresponding to the eigenvalue
λ j . Letting f be a function of x , we have

K (x) ( f v) =

(
n∑

j=1

(
−∂2

j + λ j + λ2
j (x − x)2j

)
f

)
v.

The section f v is in the kernel of K (x) if and only if each λ j is negative, and, up to a constant, f v =

exp
(

1
2

∑
j λ j (x − x)2j

)
v. Thus the dimension of the kernel of K (x) is the dimension of the intersection of the

direct sum of eigenspaces Eλ
(
L j
)

of L j = c
(
∂ j
)

Z j corresponding to negative eigenvalues. Note that L j maps E+

to itself (call the restriction L+

j ), so that the dimension of the kernel of D+
s restricted to this neighborhood is simply

the dimension of
⋂

j

(⊕
λ<0 Eλ

(
L+

j

))
.

The calculation above and Corollary 3.3 imply the following theorem.

Theorem 5.4. Let D : Γ (M, E) → Γ (M, E) be the Dirac operator corresponding to a graded, self-adjoint,
Hermitian Clifford module over a closed manifold. Suppose that there exists a proper perturbation (Definition 2.14)
Z of D. Then near each singularity x of Z, we write Z (x) =

∑
j (x − x) j Z j , where each Z+

j : E+
→ E−

is a locally defined bundle isomorphism with Z j =

(
Z+

j ,
(

Z+

j

)∗)
. We assume that we may choose Z such that

Z j (x) Zk (x) = −Zk (x) Z j (x) for all j 6= k. Define the Hermitian linear transformations

L±

j (x) = c
(
∂ j
)

Z j |E±

x
.
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Then

ind (D) =

∑
x

(
dim

[⋂
j

(⊕
λ<0

Eλ
(

L+

j (x)
))]

− dim

[⋂
j

(⊕
λ<0

Eλ
(

L−

j (x)
))])

,

where the sum is taken over all the singular points x of Z.

Remark 5.5. The assumption that Z j (x) Zk (x) = −Zk (x) Z j (x) for all j 6= k is natural, since it appears in all
local calculations where researchers have used Witten deformation (see papers mentioned in the introduction). In fact,
a stronger condition, that Z2

j is a scalar multiplication by a function and that the anticommutivity holds for all x near
x , appears in all previous work.

We now apply Theorem 5.4 when n = dim M is even. Suppose that the hypotheses of Theorem 2.17 hold,
and suppose that Z has a nonempty set of singular points. Let U be the neighborhood of a singular point x as in
Definition 2.14. Then the operator Ds = D + s Z over E |U ∼= S|U ⊗ W has the form

Ds = D + sγ ⊗ φ

= D + sγ ⊗

∑
j

(x − x) j φ j ,

with notation as in Definition 2.14 and Proposition 2.7, where each φ+

j : W +
→ W − is a locally defined self-adjoint

bundle isomorphism with φ j =

(
φ+

j ,
(
φ+

j

)∗)
. The theorem becomes:

Corollary 5.6. Let D : Γ (M, E) → Γ (M, E) be the Dirac operator corresponding to a graded, self-adjoint,
Hermitian Clifford module over an even-dimensional manifold. Let Z be a proper perturbation of D. Then near
each singularity x of Z, we write E± ∼=

(
S±

⊗ W ±
)
⊕
(
S±

⊗ W ±
)

and Z (x) =
∑

j (x − x) j γ ⊗ φ j , where each

φ+

j : W +
→ W − is a locally defined bundle isomorphism with φ j =

(
φ+

j ,
(
φ+

j

)∗)
. Assume that φ jφk = −φkφ j for

all j 6= k. Define the Hermitian linear transformations

L±

j (x) =
((

c
(
∂ j
)
γ
)
⊗ φ j

)
|E±

x
.

Then

ind (D) =

∑
x

(
dim

[⋂
j

(⊕
λ<0

Eλ
(

L+

j (x)
))]

− dim

[⋂
j

(⊕
λ<0

Eλ
(

L−

j (x)
))])

, (5.1)

where the sum is taken over all the singular points x of Z.

Remark 5.7. The proof is easily modified for the odd-dimensional case. Locally we write E |U ∼= S ⊗
(
W ′

⊕ W ′
)
|U

as in Proposition 2.10. Then Z =
∑

j (x − x) j 1 ⊗

(
0 φ j
−φ j 0

)
, where each φ j : W ′

→ W ′ is a locally defined,

skew-adjoint bundle isomorphism. Formula (5.1) is valid with the new L±

j (x) given by

L±

j (x) = c+
(
∂ j
)
⊗

(
0 φ j
φ j 0

)∣∣∣∣
E±

x

.

In this case, the formula shows that the sum of the local indices is always zero, since ind (D) = 0 in odd dimensions.

6. Examples

6.1. The de Rham operator

The bundle E = Λ•T ∗M ⊗C of complex-valued forms is a left Clifford module with the canonical Clifford action
defined by

l(v)ω = v[ ∧ ω − vyω, v ∈ Tx M, ω ∈ Λ•T ∗
x M ⊗ C.
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Here v[ denotes the covector dual to v and vy is the contraction with vector v. Similarly, E is also a right Clifford
module with the canonical right Clifford action on ΛpT ∗M ⊗ C defined by

r(v)ω = (−1)p (v[ ∧ ω + vyω
)
.

The corresponding Dirac operator is the de Rham operator

D =

∑
l
(
e j
)
∇e j = d + d∗,

where {e1, . . . , en} is a local orthonormal basis of T M .
Let the dimension of M be even. Let S denote a spinc bundle, which always exists locally but may not exist globally

if M is not a spinc manifold. Let S∗ denote the dual bundle to S. Using a bundle metric on S, identify S∗ and S. The
result below follows from the representation theory of Clifford algebras.

Lemma 6.1 (Follows from Ch. IV in [9]). Through the isomorphism of Clifford modules S ⊗ S∗ ∼= Λ•T ∗M ⊗ C, the
corresponding Clifford actions by vectors are intertwined in the following commutative diagrams:

S ⊗ S∗
∼=

−→ Λ•T ∗M ⊗ C
↓ c (v)⊗ 1 	 ↓ l (v)

S ⊗ S∗
∼=

−→ Λ•T ∗M ⊗ C

S ⊗ S∗
∼=

−→ Λ•T ∗M ⊗ C
↓ 1 ⊗ c (−v) 	 ↓ r (v)

S ⊗ S∗
∼=

−→ Λ•T ∗M ⊗ C.

The grading of E into even and odd forms E = E+
⊕ E−, where E+

= ΛevenT ∗M ⊗C and E−
= ΛoddT ∗M ⊗C,

is not natural; it does not come from the action of the chirality operator γ on E . Under the isomorphism E =

Λ•T ∗M ⊗ C ∼= S ⊗ S∗ we have E+
=
(
S+

⊗
(
S+
)∗)

⊕
(
S−

⊗
(
S−
)∗) and E−

=
(
S+

⊗
(
S−
)∗)

⊕
(
S−

⊗
(
S+
)∗).

Since the Dirac operator only acts on the first component of S ⊗ S∗, we can deform D by any linear operator
Z = γ ⊗ φ, where γ is the chirality operator and φ : S±

→ S∓ is a bundle map as in Proposition 2.7.
The following example of such a deformation is useful in the proof of the Poincaré–Hopf Theorem. Let V be a

smooth vector field on M , then for each p-form ω define

ZVω =
(
V [

∧ +V y
)
ω = (−1)p r (V ) ω : E±

→ E∓.

Recall that a point x ∈ M is called a singular (or critical) point of V (x) =
∑

k Vk (x) ∂k if for all k = 1, . . . , n,
Vk(x) = 0. A singular point of V is called nondegenerate if det (∂Vk/∂xi ) (x) 6= 0. The index of a singular point x is
defined as follows

indV (x) = sign det (∂Vk/∂xi ) (x).

Remark 6.2. Note that x ∈ M is a nondegenerate singular point of V if and only if x is a proper singular point of the
endomorphism ZV on forms.

Observe that the map ω 7−→ (−1)p ω on p-forms ω is given by the map γ ⊗ γ on S ⊗ S∗
= S ⊗ S, since γ is the

identity (respectively, minus the identity) on even (respectively, odd) spinors. Thus,

ZV = (−1)p r (V ) = (1 ⊗ c (V )) ◦ (γ ⊗ γ ) = (γ ⊗ c (V ) γ )

so that ZV = γ ⊗ φ with φ = c (V ) γ .
Near each nondegenerate singular point x of the vector field V , we choose local coordinates centered at x so

that V (x) =
∑n

j=1 x j
∑n

k=1 V jk∂k + O
(
|x |

2), where
(
V jk

)
is an invertible matrix. The model operator K (x) from

Section 5 is

K (x) = −

n∑
j=1

1∂2
j +

n∑
j,k=1

V jk
(
c
(
∂ j
)
γ ⊗ c (∂k) γ

)
+

n∑
j,k,m=1

x j xk

(
V V T

)
jk
.

We observe that K (x) = D (x)2 on even forms, where

D (x) : Γ
(
Rn,Λeven/oddT ∗Rn

⊗ C
)

→ Γ
(
Rn,Λodd/evenT ∗Rn

⊗ C
)
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is defined by

D (x) =

n∑
j=1

(
c
(
∂ j
)
⊗ 1

)
∂ j +

n∑
j,k=1

x j V jk(γ ⊗ c(∂k)γ ).

By Theorem 5.1,

χ (M) = ind
(
d + d∗

)
=

∑
V (x)=0

indRn (D(x)). (6.1)

By Corollary 4.3, each of the integers indRn (D (x)) does not change if the vector field V is deformed continuously
while remaining nondegenerate and without introducing additional zeros. Every vector field on Rn with a single,
nondegenerate zero at the origin may be continuously deformed in this way to V (x) = ±x1∂1+

∑n
j=2 x j∂ j , depending

only on the index ±1. Thus, to evaluate the right hand side of Eq. (6.1), it suffices to calculate the index of the
corresponding operator

D (x) =

n∑
j=1

(
c
(
∂ j
)
⊗ 1

)
∂ j ± x1 (γ ⊗ c (∂1) γ )+

n∑
j=2

x j
(
γ ⊗ c

(
∂ j
)
γ
)
.

The operator above satisfies the conditions of Theorem 5.4. Note that the local zeroth order operator Z corresponds
to

ZV = γ ⊗ φ = γ ⊗

[
±x1c (∂1) γ +

n∑
j=2

x j
(
c(∂ j )γ

)]

= γ ⊗

[
n∑

j=1

x jφ j

]
.

In the notation of Section 5 we have

L1 := ± (c (∂1) γ )⊗ (c (∂1) γ )

L j :=
(
c
(
∂ j
)
γ
)
⊗
(
c
(
∂ j
)
γ
)

for j ≥ 2.

If ω is a p-form, then for instance

L jω = (−1)pl
(
∂ j
)

r
(
∂ j
)
ω

=
(
dx j ∧ −dx jy

) (
dx j ∧ +dx jy

)
ω for j ≥ 2.

If, in addition, ω = dxi1 ∧ · · · ∧ dxi p , then

L jω =


ω, if j ∈

{
i1, . . . , i p

}
and j ≥ 2

−ω, if j 6∈
{
i1, . . . , i p

}
and j ≥ 2

±ω, if j = 1 ∈
{
i1, . . . , i p

}
∓ω, if j = 1 6∈

{
i1, . . . , i p

}
.

The proposition below follows.

Proposition 6.3. In a neighborhood of a zero of index ±1, then the form ω belongs to the negative eigenspace of L j
for each j if and only if

ω =

{
c if indV (x) = 1
cdx1 if indV (x) = −1

for some constant c.

Since (Λ•T ∗Rn
⊗ C)+ = (ΛevenT ∗Rn

⊗ C), the local indices of D± (x) — and thus the index indRn (D (x)) —
are now clearly determined.
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Corollary 6.4. We have indRn (D (x)) = indV (x).

The Poincaré–Hopf Theorem now follows from Eq. (6.1).

Theorem 6.5 (Poincaré–Hopf Theorem). Let V be a smooth vector field with nondegenerate singular points on an
even-dimensional, smooth manifold M. Let n± denote the number of singular points of V with the index ±1. Then

χ (M) = n+
− n−,

where χ (M) is the Euler characteristic of M.

Remark 6.6. The Poincaré–Hopf Theorem on odd-dimensional manifolds can be proved in a similar way.

Corollary 6.7. The Euler characteristic of a closed, even-dimensional spinc manifold is zero if and only if the spinc

bundles S+ and S− are isomorphic. The statement is true for any choice of spinc bundle S.

Proof. If the Euler characteristic of the manifold is zero, then there exists a nonzero vector field. Clifford
multiplication by this vector field provides the needed isomorphism. On the other hand, if a bundle isomorphism
ψ : S+

→ S− does exist, it induces a map φ : S∗
→ S∗ defined using φ+

= ψ∗
:
(
S+
)∗

→
(
S−
)∗ and φ−

=
(
φ+
)∗

and thus a proper perturbation Z = γ ⊗ φ of the de Rham operator with no singular points. �

6.2. The Euler characteristic and sections of the conformal Pin bundle

In this section, we again assume that the dimension n of M is even. We will show that the Euler characteristic is
the sum of indices of a nondegenerate section of the conformal Pin bundle.

Consider the subset Px M of all elements of the Cl (Tx M) of the form

v1v2 . . . vr

where v j ∈ Tx M for each j . This set forms a monoid, and it is the same as

Px M = {λα | α ∈ Pin (Tx M) , λ ∈ R} ⊂ Cl (Tx M)

(see [9, p. 12ff]). Note that Px M − {0} is the conformal Pin group of Tx M . Let P M denote the corresponding bundle
of monoids over M . Let P+M and P−M be defined by

P±M = P M ∩ Cl±(Tx M).

We say that x ∈ M is a nondegenerate zero of β ∈ Γ
(
P−M

)
if on a sufficiently small neighborhood U of x we

have

(1) β|x = 0, and
(2) in local coordinates x on U , there exist invertible β j ∈ Γ

(
P−M |U

)
for 1 ≤ j ≤ n = dim M over U such that

β =
∑

j (x − x) j β j on U , and β is invertible on U \ {x}.

If x ∈ M is a nondegenerate zero of β ∈ Γ
(
P−M

)
, then on some neighborhood U of x ,

β|U = W1W2 . . .Wr |U

for some vector fields W1, . . . ,Wr . Since β is nondegenerate, only one of the vector fields (say W j ) is zero at x , and
x is a nondegenerate zero of W j .

Lemma 6.8. For any two vector fields B1 and B2 such that B2 is nonzero,

B2 B1 = B̃1 B2,

where B̃1 is the vector field defined by

B̃1 = B‖

1 − B⊥

1 ,
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where B‖

1 and B⊥

1 are the components of B1 in directions parallel to and perpendicular to B2. If B1 has a
nondegenerate zero at a point where B2 is nonzero, the index of B̃1 at the point is the opposite of the index of
B1 at the point.

Proof. The equation follows from the construction of B̃1. The vector field −B̃1 is the reflection of B1 in the plane
perpendicular to B2. Since the dimension is even, the index of B̃1 is the opposite of the index of B1. �

Lemma 6.8 implies that x ∈ M is a nondegenerate zero of β ∈ Γ
(
P−M

)
if and only if in local coordinates x on

a sufficiently small neighborhood U of x , there exists a locally defined vector field V1 with an isolated nondegenerate
zero at x and a collection of nonzero vector fields V2, . . . , Vr such that

β|U = V1V2 . . . Vr |U .

Definition 6.9. Given a section β ∈ Γ
(
P−M

)
with a nondegenerate zero at x ∈ M , we define the index indβ (x) of

β at x to be the index indV1 (x) of any vector field V1 at x such that in a neighborhood U of x ,

β|U = V1V2 . . . Vr |U ,

where V1 has an isolated nondegenerate zero at x and the vector fields V2, . . . , Vr are nonzero at x .

Lemma 6.10. Given a section β ∈ Γ
(
P−M

)
with a nondegenerate zero at x ∈ M, the index of β at x is well-defined.

Proof. Suppose that we are given two different local expressions for β on a sufficiently small neighborhood U of x :

β|U = V1V2 . . . Vr |U

= W1W2 . . .Wr ′ |U ,

where V1 and W1 have isolated nondegenerate zeros at x = 0 and the vector fields V2, . . . , Vr ,W2, . . . ,Wr ′ are
nonzero at 0. Without loss of generality, we replace V1 and W1 with their linear parts

V1 =

n∑
j=1

x j V1 j , W1 =

n∑
j=1

x j W1 j ,

and we replace V2, . . . , Vr ,W2, . . . ,Wr ′ with their values at 0. Thus, the equation for β above implies that

V1 j V2 . . . Vr = W1 j W2 . . .Wr ′ .

We multiply on the right by the inverse of V2 . . . Vr to obtain

V1 j = W1 j

[
(−1)r−1

‖Vr‖
2 . . . ‖V2‖

2 W2 . . .Wr ′ Vr . . . V2

]
= W1 j T,

where T is defined to be the element T ∈ P+

x M shown in the square brackets above. We note that

T =
−1∥∥W1 j
∥∥2 W1 j V1 j for each j, (6.2)

so that it is an element of P+

x M of degree at most two. Choose an orthonormal basis { f1, . . . , fn} of Tx M such that

f1 =
W11

‖W11‖
,

V11 = c1 f1 + c2 f2

with c1, c2 ∈ R. From Eq. (6.2) with j = 1, it is easily seen that

T = t1 + t2 f1 f2

for some constants t1, t2 ∈ R.
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Suppose that for some j > 1, W1 j is not contained in the space spanned by f1 and f2, so that

W1 j = k1 f1 + k2 f2 + q,

where q is a nonzero vector orthogonal to f1 and f2. Then

V1 j = W1 j T

= t1W1 j + t2W1 j f1 f2

=
(
t1W1 j − t2k1 f2 + t2k2 f1

)
+ t2q f1 f2,

which is a vector if and only if t2 = 0. Thus, if for some j > 1 there is a vector W1 j orthogonal to the space spanned
by V11 and W11, then V1k = tW1k for some nonzero real number t , for all k. Since the dimension n is even, this
implies that the vector fields V1 and W1 have the same index at the origin.

If on the other hand, W1 j is contained in the span of f1 and f2 for each j , then the dimension n is 2, and the map

W1 j 7−→ W1 j (t1 + t2 f1 f2),

which transforms each W1 j to V1 j , induces an orientation-preserving linear transformation, whose matrix in the basis

{ f1, f2} is
(

t1 −t2
t2 t1

)
. Thus, in this case, the indices of the vector fields V1 and W1 are the same as well. �

Theorem 6.11. For any section β ∈ Γ
(
P−M

)
with nondegenerate zeros, the Euler characteristic satisfies

χ (M) =

∑
x

indβ (x)

where the sum is taken over all the zeros x of β.

Proof. Consider the proper perturbation Z of the de Rham operator

D = d + d∗
: Γ

(
M,ΛevenT ∗M ⊗ C

)
→ Γ

(
M,ΛoddT ∗M ⊗ C

)
defined by

Zβ = γ ⊗ c (β)∗ γ : S ⊗ S∗
→ S ⊗ S∗,

where we have used the isomorphism Λ•T ∗M ⊗ C ∼= S ⊗ S∗. In a neighborhood U of a particular zero x , we write

β|U = V1V2 . . . Vr |U ,

where V1 has an isolated nondegenerate zero at x and the vector fields V2, . . . , Vr are nonzero at x . Observe that

Zβ = r (β) (−1)p

=

(
V [

1 ∧ +i (V1)
) (

V [
2 ∧ +i (V2)

)
. . .
(
V [

r ∧ +i (Vr )
)

on p-forms (see Section 6.1). We now use Theorem 5.1 to calculate the index of D, which is the Euler characteristic.
Without changing the local index indRn (D (x)), we will deform it in a particularly simple way near x . We locally
deform the vector fields V2, . . . , Vr smoothly to V2

‖V2‖
(while keeping β invertible on U \ {x}), and thus the product

V2 . . . Vr is deformed to (−1)r(r−1)/2. Then β has been deformed to

β̃
∣∣
U = (−1)r(r−1)/2 V1

∣∣∣
U
.

The perturbation proof of the Poincaré–Hopf theorem implies that the difference in dimensions of the kernels of the
operators (D + s Z)±

∣∣
U for large s is the index of the vector field ±V1 at x , which is the same as the index of the V1

at x , which is by definition indβ (x). �

Remark 6.12. The theorem above implies that the odd spinor bundle Pin− (T M) has a section if and only if the Euler
characteristic of M is zero.
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Example 6.13. Consider the standard Dirac operator on the (trivial) spinc bundle S = C2m
over an even-dimensional

sphere S2m
⊂ R2m+1. Consider the section β ∈ Γ

(
P−M

)
defined by

β = p (E1) p (E2) . . . p(E2m+1),

where {E1, . . . , E2m+1} is the standard basis of vector fields in R2m+1, and where px : TxR2m+1
→ Tx S2m is the

orthogonal projection. (Note that a similar bundle map may be constructed on any spinc submanifold of R2m+1.)
Observe that β ∈ Γ

(
P−M

)
, and its zeros are the points of intersection of the axes in R2m+1 with S2m . Note that these

zeros are nondegenerate. To see this, renumber the axes so that the zero in question is the axis parallel to E1. Near
this zero, the vector fields p (E2) , . . . , p (E2m+1) are nonzero, and p (E1) = ± (sin r) ∂r , where r is the geodesic
radial coordinate. Since p (E1) is locally the gradient of ∓ cos (r), which is a Morse function near r = 0, p (E1)

has nondegenerate zeros. Also, note that the index of p (E1) is 1, since it is either a source or sink. Thus β has
nondegenerate zeros. We now compute the index of β at each zero. At one of the zeros of p

(
E j
)
, we write

β = p (E1) p (E2) . . . p (E2m+1)

= p
(
F j
)

p (E1) . . . p
(
E j−1

)
p
(
E j+1

)
. . . p (E2m+1)

= ±p
(
F j
)

p (±E1) . . . p
(
E j−1

)
p
(
E j+1

)
. . . p(E2m+1),

where F j is a vector field with two nondegenerate zeros (at the zeros of E j ) whose index is (−1) j−1 at each of those
zeros. We have used Lemma 6.8. The form of β above implies that the index of β at each of the two zeros of p

(
E j
)

is (−1) j−1. This verifies Theorem 6.11, which implies that

χ
(

S2m
)

=

∑
x

indβ (x)

=

2m+1∑
j=1

[
(−1) j−1

+ (−1) j−1
]

= 2.
6.3. The induced index on submanifolds

Let F be a real, oriented vector bundle over M with odd rank. Let E = E+
⊕ E− be a graded, self-adjoint Clifford

module over the total space of F . Identify the zero section of F with M ; the inclusion T M ⊂ T F then induces a
graded Cl (T M)-action on E over M .

Proposition 6.14. The index of the Dirac operator associated to the Cl (T M)-module E over M is zero.

Proof. Let ω be a nonzero vertical volume form that induces the orientation of F . Then Z = ic(ω) : E±
→ E∓

is a nonsingular, self-adjoint bundle map that anticommutes with Clifford multiplication by sections of T M . By
Remark 3.4, the index of the corresponding Dirac operator is zero. �

Clearly, the same result would apply to an oriented submanifold of odd codimension in a manifold endowed with
a given Clifford module; the vector bundle F is the normal bundle of the submanifold. It would also apply to a
component of the boundary of a manifold with boundary.

Remark 6.15. This resembles the cobordism invariance of the index of Dirac operators. See [11, Chapter XVII]. A
perturbation proof of the standard cobordism invariance result is given by Braverman in [4,5]. In our case, the bundle
map is an odd endomorphism, and we do not require that the manifold with boundary be compact.

Appendix A. Example when no localization occurs

In this section, we give an example of a perturbation of the Dirac operator that yields first order terms and where
no localization occurs. This motivates the requirement that Z D + DZ be a bundle map in Section 2.

Let Ds : Γ
(
S1,C

)
→ Γ

(
S1,C

)
be defined by

Ds f := i
d f

dθ
+ s (sin θ) f.
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Then Ds is a family of essentially self-adjoint differential operators. We solve the equation Ds f = λ f by separating
variables. We conclude that the eigenvalues of Ds are λ±n = ±n, and the corresponding orthonormal eigenfunctions
are

f±n (θ, s) =
1

√
2π

ei(∓nθ−s cos θ).

Clearly, as s → ∞, eigenvalues λ±n are fixed, and the eigenfunctions do not localize in the usual sense since the
magnitude of each eigenfunction stays constant: | fn (θ, s)| =

1
√

2π
.

In this case, D = i d
dθ , and Z = sin θ can be thought of as Clifford action by the complex vector field −i sin θ ∂

∂θ
.

The anticommutator of D and Z is

DZ + Z D = i
(

2 cos θ
d

dθ
− sin θ

)
,

and the operator

D2
s = −

d2

dθ2 + s

(
2i cos θ

d
dθ

− i sin θ
)

+ s2 cos2 θ

contains a first order term, as expected.

Appendix B. Graded Clifford bundles and Dirac operators

We recall several well known facts about Clifford structures on manifolds of even and odd dimensions. The
books [3,9,14] are standard references.

B.1. The Clifford bundle

As before, (M, g) is an oriented Riemannian manifold of dim M = n. For any x ∈ M , we denote by Cl (Tx M) the
Clifford algebra of the tangent space Tx M . The spaces Tx M and T ∗

x M are canonically isomorphic, using the chosen
Riemannian metric.

The Clifford algebra Cl (Tx M) is the direct sum of even and odd components, denoted Cl+ (Tx M) and Cl− (Tx M).
The Clifford bundle Cl(T M) of M is the Z2-graded bundle over M whose fiber at x ∈ M is Cl (Tx M) ([3], 3.30).

We will denote the complexified Clifford algebra Cl (Tx M) ⊗ C by Cl (Tx M) and the complexified Clifford bundle
Cl (T M)⊗ C by Cl (M).

The Levi-Civita connection ∇
T M induced by the Riemannian metric g extends canonically to a connection on

Cl (Tx M) compatible with the grading and the Clifford multiplication.

B.2. Clifford modules

A graded self-adjoint Clifford module ([3], 3.32) on a manifold M is a Z2-graded complex vector bundle
E = E+

⊕ E− together with a bundle endomorphism

c : T M → End(E).

such that the following properties hold: for any x ∈ M and any vectors v,w ∈ Tx M
(i) c(v) : E±

x → E∓
x is a graded action;

(ii) c(v)c(w)+ c(w)c(v) = −2gx (v,w)1, where gx is the metric on Tx M ;
(iii) the bundle E is equipped with a Hermitian metric such that the subbundles E+ and E− are orthogonal and the

operator c(v) is skew-adjoint ;
(iv) E is equipped with a grading-preserving Hermitian connection ∇ = ∇

E satisfying[
∇

E
V , c(W )

]
= c

(
∇

T M
V W

)
,

for arbitrary vector fields V and W on M . This connection is called a Clifford connection ([3], 3.39). Clifford
connections always exist ([3], 3.41).
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B.3. Twisted Clifford modules

Given a Clifford module E and a vector bundle F over M , we can construct the twisted Clifford module E ⊗ F
obtained from E by twisting with F . The Clifford action on E ⊗ F is given by c(v)⊗ 1. Given a connection ∇

F on F
we can define the product connection ∇

E
⊗ 1 + 1 ⊗ ∇

F on E ⊗ F .

B.4. The chirality operator and the induced grading on E

Let e1, . . . , en be an oriented orthonormal basis of Tx M . We consider the element

γ = ikc(e1) . . . c(en) ∈ End(Ex ),

where k = n/2 if n is even and k = (n + 1) /2 if n is odd. This element is independent of the choice of basis and
anticommutes with any c(v) where v ∈ Tx M if n is even and commutes if n is odd. Moreover, γ 2

= 1 ([3], 3.17). The
chirality operator γ is the section of End (E) that restricts to the element above on each fiber. The bundle map γ has
eigenvalues ±1, and we can define subbundles

E±
γ = {α ∈ E : γα = ±α}.

The grading E = E+
γ ⊕ E−

γ is called the grading induced by γ on E or the natural grading on E .

B.5. The Dirac operator

The Dirac operator D : Γ (M, E) → Γ (M, E) associated to a Clifford connection ∇
E is defined by the following

composition

Γ (M, E)
∇

E

−→ Γ
(
M, T ∗M ⊗ E

) c
−→ Γ (M, E).

In local coordinates this operator may be written as

D =

n∑
i=1

c (dxi )∇∂i : Γ
(
M, E±

)
−→ Γ

(
M, E∓

)
.

This is a first order elliptic operator. Moreover, it is formally self-adjoint and essentially self-adjoint with the initial
domain smooth, compactly supported sections ([3], p. 119). Its principal symbol is given by

σD (x, ξ) = ic (ξ) : Γ
(
M, T ∗

x M
)

→ End(Ex ).

B.6. The spin and spinc bundles

Let M be an even-dimensional oriented manifold with spin structure, and let S = S+
⊕ S− be a complex spinor

bundle over M with the grading induced by γ . It is a minimal Clifford module; i.e. for any other Clifford module E
over M there is a vector bundle F such that we have an isomorphism of Clifford modules

E ∼= S ⊗ F,

where F = HomCl(T M) (S, E) and the Clifford action is trivial on the second factor ([3], Sect. 3.3).
If the dimension of M is odd, then any Clifford module E over M is isomorphic to

E ∼= (S ⊗ F1)⊕ (S ⊗ F2)

where v ∈ Γ (M, T M) acts on S ⊗ F1 by c (v)⊗ 1 and on S ⊗ F2 by c (−v)⊗ 1. In the odd case we denote the first
action c+ (v)⊗ 1 and the second action c− (v)⊗ 1.

A connection ∇
E on the twisted Clifford module E = S ⊗ F is a Clifford connection if and only if

∇
E

= ∇
S

⊗ 1 + 1 ⊗ ∇
F

for some connection ∇
F on F .
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Note that there are global obstructions to the existence of complex spinor bundles (see [3], 3.34); however, locally
the decompositions above always exist.

Every spin manifold and every almost complex manifold has a canonical spinc structure. In addition, every oriented,
compact manifold of dimension ≤ 3 is spinc [10].

B.7. Local classification of gradings

The above results apply to Dirac operators over bundles with the natural grading — that induced directly from the
grading on complex spinors. The following lemma classifies all possible gradings for Clifford representations (and
thus Dirac operators).

Let V be an oriented, real Euclidean vector space, and let E = E+
⊕ E− be a complex vector space that

is a graded Cl (V )-module. Let S denote the irreducible representation space of Cl (V ). Let c (v) denote the
Clifford multiplication by v ∈ V on S = S+

⊕ S− when V is even-dimensional, and let c+ (v) : S → S
and c− (v) := −c+ (v) : S → S be the Clifford multiplications that generate the two nonequivalent irreducible
representations of Cl (V ) when V is odd-dimensional. We let

cE (v) : E±
→ E∓

denote the Clifford action by v on the graded vector space E .

Lemma B.1. With the notation described above, there exists a complex vector space W such that

(1) E ∼= S ⊗ W , where W ∼= HomCl(V ) (S, E).
(2) If the dimension of V is even, then the associated Clifford action on S ⊗ W is c (v) ⊗ 1. In addition,

W = W +
⊕ W − for some orthogonal subspaces W ± of W , and E± ∼=

(
S+

⊗ W ±
)
⊕
(
S−

⊗ W ∓
)
.

(3) If the dimension of V is odd, then there exists an orthogonal decomposition W = W ′
⊕ W ′, such that

E ∼= S ⊗ W ∼=
(
S ⊗ W ′

)
⊕
(
S ⊗ W ′

)
,

the induced action of cE (v) on
(
S ⊗ W ′

)
⊕
(
S ⊗ W ′

)
is given by(

c+ (v)⊗ 1, c− (v)⊗ 1
)

=
(
c+ (v)⊗ 1, c+ (v)⊗ −1

)
,

and

E± ∼= S ⊗ span
{
(w,±w) ∈ W ′

⊕ W ′
| w ∈ W ′

}
.

Proof. The first statement follows directly from the general facts about the representation theory of Clifford algebras;
see Appendix B.6.

To prove (2), observe that the even part of the Clifford algebra Cl+ (V ) acts by endomorphisms on E+ and E−.
This leads to a representation of spinc (n) ⊂ Cl+ on E+ and E−. There are exactly two nonequivalent irreducible
representations of spinc (n), given by the actions of Cl+ on S+ and S−; see [10, p. 432]. Thus, there are complex vector
spaces W + and W − such that E+ ∼=

(
S+

⊗ W +
)
⊕
(
S−

⊗ W −
)
, which implies that E− ∼=

(
S−

⊗ W +
)
⊕
(
S+

⊗ W −
)
.

To prove (3), where V is odd-dimensional, observe that there is a unique irreducible representation of spinc (n),
given by the action of Cl+ on S. We have E = E+

⊕ E− ∼=
(
S ⊗ W +

)
⊕
(
S ⊗ W −

)
∼= S ⊗

(
W +

⊕ W −
)

with the
Clifford action on the last term being cE (v) = c+(v)⊗ J . Here J : W ±

→ W ∓. The operator J must be Hermitian
and squares to identity (since cE (v) is skew-Hermitian and squares to −1).

Now let {e1, . . . , ek} be an orthonormal basis of W +; then {Je1, . . . , Jek} must be an orthonormal basis of W −.
Thus W has an orthonormal basis {e1, . . . , ek, Je1, . . . , Jek}. We introduce a new decomposition of W = W1 ⊕ W2,
where W1 = span

{
e1 + Je1,...,ek + Jek

}
and W2 = span {e1 − Je1, . . . , ek − Jek}. Then J is the identity on W1

and minus the identity on W2, and we can decompose E as

E ∼= (S ⊗ W1)⊕ (S ⊗ W2),

where cE (v) acts by
(
c+(v)⊗ 1, c+(v)⊗ −1

)
. The conclusion (3) follows from the observation that W ′

:= W1 ∼= W2,
where the isomorphism maps each em + Jem to em − Jem . �
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B.8. Global classification of gradings

Let E = E+
⊕ E− be a graded, self-adjoint, Hermitian Cl (T M)-module over M . Suppose that M is spinc. Choose

a spinc structure on M . Let S be the corresponding spinc bundle over M , so that the representation of Cl (T M)
is irreducible on S and Cl (T M) ∼= End (S). Let c (v) denote the Clifford multiplication by v ∈ T M ⊗ C on S;
S = S+

⊕ S− if M is even-dimensional. Let c+ (v) : S → S and c− (v) := −c+ (v) : S → S be the Clifford
multiplications that generate the two irreducible representations of Cl (T M) when M is odd-dimensional. We let

cE (v) : E±
→ E∓

denote the Clifford multiplication by v on the graded vector bundle E .

Corollary B.2 (Classification of Bundles of Graded Clifford Modules). If M is spinc with the above notation, there
exists a complex vector bundle W such that

(1) E ∼= S ⊗ W , where W ∼= HomCl(M) (S, E).
(2) When M is even-dimensional, the associated Clifford action on S ⊗ W is c (v) ⊗ 1. Then W = W +

⊕ W − for
some orthogonal vector subbundles W ± of W , and E± ∼=

(
S+

⊗ W ±
)
⊕
(
S−

⊗ W ∓
)
.

(3) When M is odd-dimensional, there exists an orthogonal decomposition W = W ′
⊕ W ′, such that

E ∼= S ⊗ W ∼=
(
S ⊗ W ′

)
⊕
(
S ⊗ W ′

)
,

the induced action of cE (v) on
(
S ⊗ W ′

)
⊕
(
S ⊗ W ′

)
is given by(

c+ (v)⊗ 1, c− (v)⊗ 1
)

=
(
c+ (v)⊗ 1, c+ (v)⊗ −1

)
,

and

E± ∼= S ⊗ span
{
(w,±w) ∈ W ′

⊕ W ′
| w ∈ W ′

}
.

Finally, if M is not spinc, then the relevant facts above are true locally but not globally; that is, the bundles S, W ,
W ±, W ′ can be defined on a sufficiently small neighborhood of any given point of M, and the properties above are
true over that neighborhood, but S cannot be extended to a globally defined spinc bundle.

Proof. The fact that E ∼= S ⊗ W in both the odd and even cases follows by setting W = HomCl (S, E), the bundle
maps from S to E that are Cl (T M)-equivariant. (In the odd case, one must fix an irreducible representation c+ on S
once and for all.) The isomorphism S ⊗ W → E is given by s ⊗ w 7→ w (s).

In the even case, observe that the bundles W ± may be defined globally by noting that for example
(
S+

⊗ W ±
)

=

E±
∩
(
S+

⊗ W
)
, where we have abused notation using the isomorphism S ⊗ W → E .

In the odd case, observe that in the proof of Lemma B.1, the representation theory alone determines the bundles
W1 and W2 from W , and the construction of W ′ is canonical. The result follows. �
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